The Calcium Thallate $Ca_3Tl_2O_6$, Third Member of the Series $Ca_nTl_2O_{n+3}$ F. Goutenoire, V. Caignaert, M. Hervieu, C. Michel, and B. Raveau Laboratoire CRISMAT-CNRS URA 1318-ISMRA, Université de Caen, Boulevard du Maréchal Juin, 14050 Caen Cedex, France Received April 8, 1994; in revised form July 7, 1994; accepted July 13, 1994 A new calcium thallate, $Ca_3Tl_2O_6$ has been synthesized. It crystallizes in the space group Pbam with a=11.248(2) Å, b=16.513(2) Å, and c=3.3329(3) Å. The ab initio determination of its structure from powder X-ray data shows that it consists of zigzag rock-salt-type layers $[Ca_4Tl_4O_{14}]_{\infty}$ parallel to (010), built up from quadruple ribbons of TlO_6 octahedra running along c, interconnected with single and double ribbons of CaO_6 octahedra. Along b, these rock-salt-type layers share the corners of their octahedra forming tunnels approximately similar to those observed in $CaTl_2O_4$, where calcium ions are located with a monocapped trigonal prismatic coordination. This oxide represents the third member of the series $Ca_nTl_2O_{n+3}$; its relationships with the two n=1 and 2 members $CaTl_2O_4$ and $Ca_2Tl_2O_5$, that correspond to a chemical twinning of the rock salt structure, are discussed. In fact $Ca_3Tl_2O_6$ is isostructural with $Ca_3ln_2O_6$. © 1995 Academic Press, Inc. # INTRODUCTION After the discovery of superconductivity in thallium cuprates at high temperature (1), several studies have shown that trivalent thallium was a potential candidate to generate a large series of layered copper oxides (see for review Ref. (2)). However, as yet, the chemistry of Tl(III) oxides has not been extensively studied, so that very few data are available for understanding the behavior of Tl(III) in such complex systems from the chemical as well as from the physical point of view. The pseudobinary systems Tl_2O_3 -AO, with A = Ca, Sr, Ba, that are involved in the synthesis of such oxides, are themselves as yet not well known. Only one barium thallate, Ba₂Tl₂O₅ (3), and two strontium thallates, Sr₄Tl₂O₇ (4) and SrTl₂O₄ (5), have been obtained up to now. Recently, the exploration of the system CaO-Tl₂O₃ allowed two new phases to be isolated, CaTl₂O₄ and Ca₂Tl₂O₅, that correspond to the two first members of a series of oxides Ca_nTl₂O_{n+3} (6), characterized by a chemical twinning of the rock salt structure. We report here on the third member of this series, Ca₃Tl₂O₆, that also exhibits rock-salt-type layers, but differs from the two first members. #### **EXPERIMENTAL** The oxide Ca₃Tl₂O₆ has been prepared from an intimate mixture of Tl₂O₃ and CaO in stoichiometric molar ratios. Various conditions of synthesis were investigated. The best results were obtained by heating the mixture at 700°C for 10 hr in a sealed silica tube, in order to avoid thallium losses, using an alumina crucible as a support. The sample was finally air quenched down to room temperature. The powder X-ray pattern was registered with a Bragg-Brentano diffractometer, the details of the data collection are presented in Table 1. The X-ray pattern was used to refine the structure with the profile computer program FULLPROF (8). The electron diffraction study of the microcrystals was performed with a JEOL 200CX electron microscope fitted with an eucentric goniometer (±60°). The microanalysis (EDS) was made with a KEVEX analyzer. ### RESULTS AND DISCUSSION For the above experimental conditions, an almost pure phase could be obtained in the form of a well-crystallized orange powder. The EDS analysis was performed on more than 30 microcrystals and gave an atomic ratio $Ca/Tl \approx 1.3$, close to the nominal composition $Ca_3Tl_2O_6$. Nevertheless, besides the latter, one always observed another phase that was identified as a new thallium oxycarbonate $Ca_4Tl_2O_6CO_3$ and whose structure is reported elsewhere (7). It is not known whether the oxycarbonate results from the exposure of $Ca_3Tl_2O_6$ to atmosphere, or from the presence of traces of calcium carbonate in the starting calcium oxide; nevertheless the high stability of $Ca_4Tl_2O_6CO_3$ suggests that it is formed at high temperature due to the presence of $CaCO_3$ traces. The electron diffraction patterns of this new oxide (Fig. 1) allowed one to conclude it is an orthorhombic cell, with the reflection conditions h0l, h = 2n and 0kl, k = 2n, leading to the space group *Pbam*. Note that the weak h00 and 0k0 reflections with n = 2n + 1 and k = 2n + 1 are TABLE 1 Rietveld Refinement Data for Ca₃Tl₂O₆ | Diffractometer | Philips PW 3710 $CuK\alpha$, equipped with a secondary graphite monochromator | | | | |---|--|--|--|--| | Radiation | | | | | | 2θ range [°] | 8-120 | | | | | Step scan increment [°2\theta] | 0.02 | | | | | Count time [sec/step] | 15 | | | | | Peak shape | Pseudo-Voigt | | | | | Number of observations | 5601 | | | | | Number of reflextions | 1108 | | | | | Number of refined structural parameters | 30 | | | | | Number of profile parameters | 8 | | | | | R_i | 4.84 | | | | | R _n | 8.92 | | | | | R _{wp} | 12.1 | | | | | R _{exp} | 6.19 | | | | | XŽ | 3.79 | | | | observed in the [001] ED patterns (Fig. 1b), due to multiple diffraction effects. The X-ray pattern (Fig. 2), could then be indexed on the basis of this orthorhombic cell with the following parameters: a = 11.248(2) Å, b = 16.513(2) Å, c = 3.3329(3) Å. The ab initio resolution of the structure was carried out by the heavy atom method. The integrated intensities were extracted from the powder X-ray data corresponding to $8^{\circ} \le 2\theta \le 55^{\circ}$ by a full pattern decomposition method with the FULLPROF program. As for CaTl₂O₄ (6), the resolution of the Patterson function allowed the "Tl-Tl" peaks to be easily identified, and in a second step allows the calcium atoms to be localized, confirming the composition "Ca₃Tl₂." The oxygen sites were located after subsequent cycles of refinement and difference Fourier syntheses. The refinement of the structure was then carried out, with the FULLPROF program, introducing the oxy- carbonate Ca₄Tl₂O₆CO₃ (7) as an impurity in the calculations The integrated peak intensities of $\text{Ca}_4\text{Tl}_2\text{O}_6\text{CO}_3$ were extracted from the powder X-ray pattern of pure $\text{Ca}_4\text{Tl}_2\text{O}_6\text{CO}_3$, by a full pattern decomposition method in the range $8^\circ \le 2\theta \le 120^\circ$. During the refinement the relative intensities were fixed and only three variable parameters, a, c, and the scale factor, were refined, (P4/mmm, a = 3.38 Å, c = 9.10 Å). The positional parameters of all the atoms were first refined for the metallic atoms and for the oxygen atoms successively. The occupancy factors and thermal factors of the metallic atoms were then refined successively. The refinement of $B(Tl_1)$ tends toward a small negative value, which has no physical meaning. Thus we have arbitrarily fixed $B(Tl_1)$ at 0.1 Å²; this value did not lead to a significant change in the reliability factor. The B factor of all the oxygen atoms were arbitrarily fixed at 1 Å², due to their low atomic diffusion factor. In these conditions the reliability factor was lowered to $R_i = 4.84\%$ for the atomic coordinates listed in Table 2. The ordering between thallium and calcium is remarkable. Two 4(g) sites, labeled Tl_1 and Tl_2 are fully occupied by thallium, and one 4(h) site labeled Ca₃ is fully occupied by calcium. The two other 4(h) sites, Ca_1 and Ca_2 , are found to be mainly occupied by calcium (90%) with a presence of thallium (10%). The ability of thallium to occupy octahedral calcium sites is not unusual since it has previously been observed for Ca₂Tl₂O₅ (6). Nevertheless, this partial occupation by thallium cannot be considered as significant especially if one takes into account the difficulty of the resolution due to the presence of a secondary phase. Thus, the chemical formula deduced from these refinements, Ca_{2.8}Tl_{2.2}O₆ (i.e., Ca_{2.75}Tl_{2.16}O₆) is in perfect agreement with the EDS analysis Ca/Tl≈ 1.3. We can also conclude to a small deviation from the ideal formulation $Ca_3Tl_2O_6$ in the form $Ca_{3-x}Tl_{2+x'}O_6$. This difference with FIG. 1. (a) [100], (b) [001], and (c) [010] ED patterns of $Ca_3Tl_2O_6$. FIG. 2. Final profile refinement of Ca₃Tl₂O₆; observed (point), calculated (line), and difference (lower) profiles are shown. the nominal composition Ca₃Tl₂O₆ can be explained by the presence of Ca₄Tl₂O₆CO₃, which is calcium rich. The projection of this structure onto the (001) plane (Fig. 3) shows that it is very similar to those of $Ca_3In_2O_6$ and $SrCa_2In_2O_6$ described by Müller-Buschbaum *et al.* (9, 10). One indeed recognizes similar ribbons of edge-sharing TlO_6 and CaO_6 octahedra linked themselves through their TABLE 2 Crystallographic Parameters of Ca₃Tl₂O₆ Space Group: *Pbam*; Z = 4 Cell parameters: a = 11.248(2) Å, b = 16.513(2) Å, and c = 3.3329(3) Å | Site | x | у | z | Occupation | B (Å ²) | |------------|-------------------------------|--|---|---|---| | 4g | 0.1346(2) | 0.04572(3) | 0.0 | 1 | 0.1(a) | | 4g | 0.0852(2) | 0.6491(1) | 0.0 | l | 0.5(1) | | 4 <i>h</i> | 0.1703(5) | 0.2264(3) | 0.5 | 0.90(5) | 0.4(2) | | 4h | 0.1703(5) | 0.2264(3) | 0.5 | 0.10(5) | | | 4h | 0.1349(5) | 0.4592(4) | 0.5 | 0.90(5) | 0.4(2) | | 4h | 0.1349(5) | 0.4592(4) | 0.5 | 0.10(5) | | | 4h | 0.3936(6) | 0.3548(5) | 0.5 | 1 | 0.7(2) | | 4g | 0.053(2) | 0.157(2) | 0.0 | i | 1a | | 2c | 0.5 | 0.0 | 0.0 | 1 | 1 a | | 4g | 0.275(2) | 0.429(1) | 0.0 | 1 | 1^a | | 2b | 0.0 | 0.0 | 0.5 | 1 | 1 a | | 4h | 0.289(2) | 0.091(2) | 0.5 | 1 | 1 a | | 4 <i>h</i> | 0.046(2) | 0.332(1) | 0.5 | 1 | 1 a | | 4 <i>g</i> | 0.305(2) | 0.263(2) | 0.0 | 1 | 1 a | | | 4g 4h 4h 4h 4h 4h 4g 2c 4g 4h | 4g 0.1346(2)
4g 0.0852(2)
4h 0.1703(5)
4h 0.1703(5)
4h 0.1349(5)
4h 0.3936(6)
4g 0.053(2)
2c 0.5
4g 0.275(2)
2b 0.0
4h 0.289(2)
4h 0.046(2) | 4g 0.1346(2) 0.04572(3) 4g 0.0852(2) 0.6491(1) 4h 0.1703(5) 0.2264(3) 4h 0.1703(5) 0.2264(3) 4h 0.1349(5) 0.4592(4) 4h 0.1349(5) 0.4592(4) 4h 0.3936(6) 0.3548(5) 4g 0.053(2) 0.157(2) 2c 0.5 0.0 4g 0.275(2) 0.429(1) 2b 0.0 0.0 4h 0.289(2) 0.091(2) 4h 0.046(2) 0.332(1) | 4g 0.1346(2) 0.04572(3) 0.0 4g 0.0852(2) 0.6491(1) 0.0 4h 0.1703(5) 0.2264(3) 0.5 4h 0.1703(5) 0.2264(3) 0.5 4h 0.1349(5) 0.4592(4) 0.5 4h 0.1349(5) 0.4592(4) 0.5 4h 0.3936(6) 0.3548(5) 0.5 4g 0.053(2) 0.157(2) 0.0 2c 0.5 0.0 0.0 4g 0.275(2) 0.429(1) 0.0 2b 0.0 0.0 0.5 4h 0.289(2) 0.091(2) 0.5 4h 0.046(2) 0.332(1) 0.5 | 4g 0.1346(2) 0.04572(3) 0.0 1 4g 0.0852(2) 0.6491(1) 0.0 1 4h 0.1703(5) 0.2264(3) 0.5 0.90(5) 4h 0.1703(5) 0.2264(3) 0.5 0.10(5) 4h 0.1349(5) 0.4592(4) 0.5 0.90(5) 4h 0.1349(5) 0.4592(4) 0.5 0.10(5) 4h 0.3936(6) 0.3548(5) 0.5 1 4g 0.053(2) 0.157(2) 0.0 1 2c 0.5 0.0 0.0 1 4g 0.275(2) 0.429(1) 0.0 1 2b 0.0 0.0 0.5 1 4h 0.289(2) 0.091(2) 0.5 1 4h 0.046(2) 0.332(1) 0.5 1 | $^{^{\}alpha}$ B factors for Tl $_{1}$ and oxygen are arbitrary fixed at 0.1 and 1 $\,\mathring{A}^{2}$ respectively. apices. Nevertheless Ca₃Tl₂O₆ differs from the indium compounds by the ordered arrangement of the TlO₆ and CaO₆ octahedra, whereas indium and calcium are distrib- FIG. 3. Projection of the $\text{Ca}_3\text{Tl}_2\text{O}_6$ structure onto the (001) plane; the thallium octahedra (clear) and the calcium octahedra (dark) are shifted c/2 with respect to each other. FIG. 4. (a) Projection of the CaTl₂O₄ structure onto the (001) plane; dark and clear octahedra are shifted c/2. (b) Projection of the Ca₂Tl₂O₅ structure onto the (001) plane; dark and clear octahedra are shifted of c/2. uted at random in $Ca_3In_2O_6$ and $SrCa_2In_2O_6$. This different behavior may be due to the experimental conditions especially the temperature close to $700^{\circ}C$ for the Tl-phase, instead of $1400^{\circ}C$ for the In compounds. This structure is also closely related to those of CaTl₂O₄ (6) (Fig. 4a) and Ca₂Tl₂O₅ (6) (Fig. 4b). Like the latter it exhibits zigzag rock salt layers of edge-sharing TlO₆ and CaO₆ octahedra forming approximately similar tunnels running along c where the calcium ions are located. Such layers (Fig. 5), that can be formulated $[Ca_4Tl_4O_{14}]_x$, are paralleled to the (010) plane, i.e., to the $(113)_{RS}$ plane of the rock salt structure, as in Ca₂Tl₂O₅ and CaTl₂O₄. But the mechanism of the assemblage is quite different; here the layers are shifted (a/2-b/6) (Fig. 5) with respect to their ideal structure (Fig. 6) derived directly from Ca₂Tl₂O₅ and CaTl₂O₄. As a result the rows of prismatic tunnels zigzag along a. In fact, each [Ca₄Tl₄O₁₄]_x layer can be described as being built up from infinite ribbons of edge-sharing TlO₆ octahedra running along c that are four octahedra wide along $\begin{bmatrix} 3 & 1 & 0 \end{bmatrix}$ or $\begin{bmatrix} 3 & 1 & 0 \end{bmatrix}$ (clear octahedra). These thallium ribbons located at z = 0 share the edges of their octahedra with calcium ribbons running also along c, but shifted c/2. The CaO₆ octahedra form in fact two kinds of ribbons (dark octahedra), single and double rutile ribbons. Two successive [Ca₄Tl₄O₁₄]_x rock salt layers (Fig. 5) share the corners of their octahedra in such a way that one CaO₆ octahedron of one layer (Ca₁) shares one apex with two adjacent octahedra TlO₆ (Tl₂) and CaO₆ (Ca₂), of the next layer; as a result the oxygen atoms that are shared by two successive rock salt layers are linked to four cations (2Tl2, 1Ca1, 1Ca2). Thus two successive rock salt layers $[Ca_4Tl_4O_{14}]_{\infty}$ form the framework $[Ca_4Tl_4O_{12}]_{\infty}$ (Fig. 5). TABLE 3 Interatomic Distance for Ca₃Tl₂O₆ (in Å) | • | | |----------|--| | 2.06(3) | ×1 | | 2.16(2) | ×1 | | 2.37(1) | ×2 | | 2.45(2) | ×2 | | 2.64(2) | ×1 | | 2.45(2) | ×2 | | 2.45(1) | ×2 | | 2.25(2) | ×1 | | 2.41(2) | ×2 | | 2.55(2) | ×1 | | 2.24(2) | $\times 1$ | | 2.33(2) | ×2 | | 2.35(4) | ×2 | | 2.38(2) | $\times 2$ | | 2.38(2) | ×1 | | 2.32(2) | ×1 | | 2.46(2) | ×2 | | 2.43(2) | ×2 | | 2.681(8) | $\times 1$ | | 2.46(2) | ×2 | | | 2.16(2)
2.37(1)
2.45(2)
2.64(2)
2.45(2)
2.45(1)
2.25(2)
2.41(2)
2.55(2)
2.24(2)
2.33(2)
2.38(2)
2.38(2)
2.38(2)
2.38(2)
2.46(2)
2.43(2)
2.43(2)
2.681(8) | FIG. 5. Assemblage of two $[Ca_4Tl_4O_{14}]_x$ layers to form the framework $[Ca_4Tl_4O_{12}]_x$. Thus Ca₃Tl₂O₆ can be considered from its structural relationships and from its chemical formula as the n = 3member of the series Ca_nTl₂O_{n+3}, CaTl₂O₄ and Ca₂Tl₂O₅ corresponding to n = 1 and 2 respectively. Nevertheless in spite of this similarity it does not exhibit the hypothetical structure (Fig. 6) that would be obtained from the extrapolation of the two first members of this series (Fig. 4a and 4b). Clearly Ca₃Tl₂O₆ does not correspond to a chemical twinning of the ock salt structure in contrast with the two other members of the series, CaTl₂O₄ and Ca₂Tl₂O₅. Consequently the innels formed at the junction between two rock salt layers are different. In the three structures the tunnels are built up of six rows of octahedra running along r (T 7), five of them being oriented in a similar mann Ca₃Tl₂O₆ tunnels (Fig. 7a) differ from the "uctures (Fig. 7b and 7c) by the tunne orient.. ow of CaO₆ octahedra (Ca₁) that FIG. 6. Ideal structure of the hypothetical member n=3 of the $Ca_nTl_2O_{n+3}$: $Ca_2Tl_2O_6$, built up of infinite $[Ca_2Tl_2O_6]_x$ layers. FIG. 7. (a) Projection of the ideal pentagonal tunnel of $Ca_3Tl_2O_6$ structure onto the (001) plane, dark and clear octahedra are shifted c/2. (b) Projection of the ideal pentagonal tunnel of $CaTl_2O_4$ and (c) $Ca_2Tl_2O_5$ structures onto the (001) plane; dark and clear octahedra are shifted c/2. is moreover translated c/2 with respect to the latter. Nevertheless, the coordination of the calcium ions is similar in the two structures, corresponding to a monocapped trigonal prism CaO_7 for (Ca_3) in $Ca_3Tl_2O_6$ (Fig. 7a), to a bicapped trigonal prism CaO_8 in $CaTl_2O_4$ (6) (Fig. 7b), and to a pure trigonal prism CaO_6 in $Ca_2Tl_2O_5$ (6) (Fig. 7c). The interatomic distances (Table 3) are similar to those observed for Ca₂Tl₂O₅ and CaTl₂O₄. The (Tl₁) octahedra exhibit Tl-O distances ranging from 2.06 to 2.45 Å, close to those observed in CaTl₂O₄ and Ca₂Tl₂O₅. The (Tl₂) octahedra are more distorted: one Tl-O distance is indeed abnormally long: 2.64 Å, compared to the five other distances ranging from 2.25 to 2.45 Å. The CaO₆ octahedra are rather regular with Ca-O distances ranging from 2.24 to 2.55 Å for (Ca₁) and from 2.35 to 2.38 Å for (Ca₂). The six Ca-O distances that form the CaO₆ trigonal prism for (Ca₃) are close to those obtained for CaTl₂O₄ and Ca₂Tl₂O₅ ranging from 2.43 to 2.46 Å instead of 2.32-2.39 Å for CaTl₂O₄ and 2.27-2.51 Å for Ca₂Tl₂O₅; the seventh oxygen is located at a shorter distance from calcium: 2.68 Å instead of 2.87 Å for CaTl₂O₄ and 3.07 Å for Ca₂Tl₂O₅. ## CONCLUDING REMARKS The synthesis of Ca₃Tl₂O₆ confirms the great ability of the Ca-Tl-O system to form rock-salt-type derived phases. The close relationships between this phase and the two thallates CaTl₂O₄ and Ca₂Tl₂O₅ suggest that other members of the series may exist. A systematic exploration of this system, varying the experimental conditions, will be performed. #### REFERENCES - Z. Z. Sheng and A. M. Herman, *Nature* 332, 55 (1988); Z. Z. Sheng and A. M. Herman, *Nature* 332, 138 (1988). - B. Raveau, C. Michel, M. Hervieu, and D. Groult, "Crystal Chemistry of High-Tc Superconducting Copper Oxides." Springer Series in Materials Science 15. Springer-Verlag, Berlin, 1991. - R. V. Schenck and H. K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 405, 197 (1974). - R. V. Schenck and H. K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 396, 113 (1973). - C. Michel, M. Hervieu, B. Raveau, S. Li, M. Greaney, S. Fine, J. Potenza, and M. Greenblatt, *Mater. Res. Bull.* 26, 123 (1991). C. Michel, M. Hervieu, V. Caignaert, and B. Raveau, *Acta Crystallogr. Sect. C* 48, 1747 (1992). - F. Goutenoire, V. Caignaert, M. Hervieu, C. Michel, and B. Rayeau. J. Solid State Chem. to appear. - 7. V. Caignaert, M. Hervieu, F. Goutenoire, and B. Raveau, J. Solid State Chem, in press. - 8. J. Rodriguez-Carvajal, in "Satellite Meeting on Powder Diffraction," abstracts of the XVth Conference of the International Union of Crystallography, Toulouse, 1990, p. 127. - 9. R. V. Schenck and H. K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 398, 15 (1973). - V. W. Muschick and H. K. Müller-Buschbaum, Z. Anorg. Allg. Chem. 435, 56 (1977).